A complement of the Ando–Hiai inequality

Autor: Yuki Seo, Masaru Tominaga
Rok vydání: 2008
Předmět:
Zdroj: Linear Algebra and its Applications. 429(7):1546-1554
ISSN: 0024-3795
DOI: 10.1016/j.laa.2008.04.025
Popis: In this paper, we present a complement of a generalized Ando–Hiai inequality due to Fujii and Kamei [M. Fujii, E. Kamei, Ando–Hiai inequality and Furuta inequality, Linear Algebra Appl. 416 (2006) 541–545]. Let A and B be positive operators on a Hilbert space H such that 0 m 1 ⩽ A ⩽ M 1 and 0 m 2 ⩽ B ⩽ M 2 for some scalars m i ⩽ M i ( i = 1 , 2 ), and let α ∈ [ 0 , 1 ] . Put h i = M i m i for i = 1 , 2 . Then for each 0 r ⩽ 1 and s ⩾ 1 A r ♯ α r ( 1 - α ) s + α r B s ⩽ K h 1 s h 2 s , r s - ( 1 - α ) s ( 1 - α ) s + α r h 2 ( 1 - α ) s ( s - r ) ( 1 - α ) s + α r ‖ A ♯ α B ‖ rs ( 1 - α ) s + α r , where A ♯ α B ≔ A 1 2 ( A - 1 2 BA - 1 2 ) α A 1 2 is the α -geometric mean and a generalized Kantorovich constant K ( h , p ) is defined for h > 0 as K ( h , p ) ≔ h p - h ( p - 1 ) ( h - 1 ) p - 1 p h p - 1 h p - h p for all real numbers p ∈ R .
Databáze: OpenAIRE