Error analysis for the finite element approximation of the Brinkmann-Darcy-Forchheimer model for porous media with mixed boundary conditions

Autor: Pierre-Henri Cocquet, Delphine Ramalingom, Alain Bastide, Michaël Rakotobe
Přispěvatelé: Physique et Ingénierie Mathématique pour l'Énergie, l'environnemeNt et le bâtimenT (PIMENT), Université de La Réunion (UR), ONERA - The French Aerospace Lab [Toulouse], ONERA
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Journal of Computational and Applied Mathematics
Journal of Computational and Applied Mathematics, Elsevier, 2020, ⟨10.1016/j.cam.2020.113008⟩
ISSN: 0377-0427
DOI: 10.1016/j.cam.2020.113008⟩
Popis: International audience; This paper deals with the finite element approximation of the Darcy-Brinkman-Forchheimer equation, involving a porous media with spatially-varying porosity, with mixed boundary condition such as inhomogeneous Dirichlet and traction boundary conditions. We first prove that the considered problem has a unique solution if the source terms are small enough. The convergence of a Taylor-Hood finite element approximation using a finite element interpolation of the porosity is then proved under similar smallness assumptions. Some optimal error estimates are next obtained when assuming the solution to the Darcy-Brinkman-Forchheimer model are smooth enough. We end this paper by providing a fixed-point method to solve iteratively the discrete non-linear problems and with some numerical experiments to make more precise the smallness assumptions on the source terms and to illustrate the theoretical convergence results.
Databáze: OpenAIRE