The multilayer community structure of medulloblastoma

Autor: Iker Núñez-Carpintero, Marianyela Petrizzelli, Davide Cirillo, Alfonso Valencia, Andrei Zinovyev
Přispěvatelé: Barcelona Supercomputing Center, Institut Curie [Paris], ANR-19-P3IA-0001,PRAIRIE,PaRis Artificial Intelligence Research InstitutE(2019), European Project: 826121,iPaediatricCurie
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
iScience
iScience, Elsevier, 2021, 24 (4), pp.102365. ⟨10.1016/j.isci⟩
iScience, Vol 24, Iss 4, Pp 102365-(2021)
ISSN: 2589-0042
DOI: 10.1016/j.isci⟩
Popis: Summary Multilayer networks allow interpreting the molecular basis of diseases, which is particularly challenging in rare diseases where the number of cases is small compared with the size of the associated multi-omics datasets. In this work, we develop a dimensionality reduction methodology to identify the minimal set of genes that characterize disease subgroups based on their persistent association in multilayer network communities. We use this approach to the study of medulloblastoma, a childhood brain tumor, using proteogenomic data. Our approach is able to recapitulate known medulloblastoma subgroups (accuracy >94%) and provide a clear characterization of gene associations, with the downstream implications for diagnosis and therapeutic interventions. We verified the general applicability of our method on an independent medulloblastoma dataset (accuracy >98%). This approach opens the door to a new generation of multilayer network-based methods able to overcome the specific dimensionality limitations of rare disease datasets.
Graphical abstract
Highlights • The molecular interpretation of rare diseases is a challenging task • Multilayer networks allow patient stratification and explainability • We identify subgroup-specific genes and multilayer associations in medulloblastoma • Multilayer community analysis enables the molecular interpretation of rare diseases
Proteomics; Cancer Systems Biology; Cancer
Databáze: OpenAIRE