Study of a gauge invariant local composite fermionic field
Autor: | M. A. L. Capri, Silvio P. Sorella, R. C. Terin |
---|---|
Přispěvatelé: | Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
High Energy Physics - Theory
nonpolynomial Fermionic field High Energy Physics::Lattice FOS: Physical sciences General Physics and Astronomy Ward identity algebra renormalizable gauge field theory: SU(N) 01 natural sciences symbols.namesake High Energy Physics::Theory Gauge group 0103 physical sciences invariance: gauge Covariant transformation 010306 general physics Mathematical physics Physics Spinor 010308 nuclear & particles physics [PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] High Energy Physics::Phenomenology mathematical methods Invariant (physics) fermion: composite High Energy Physics - Theory (hep-th) Spinor field symbols Vector field gauge: covariance Composite field |
Zdroj: | Annals Phys. Annals Phys., 2020, 414, pp.168077. ⟨10.1016/j.aop.2020.168077⟩ |
DOI: | 10.1016/j.aop.2020.168077⟩ |
Popis: | In this work, we study a gauge invariant local non-polynomial composite spinor field in the fundamental representation in order to establish its renormalizability. Similar studies were already done in the case of pure Yang-Mills theories where a local composite gauge invariant vector field was obtained and an invariant renormalizable mass term could be introduced. Our model consists of a massive Euclidean Yang-Mills action with gauge group $SU(N)$ coupled to fermionic matter in the presence of an invariant spinor composite field and quantized in the linear covariant gauges. The whole set of Ward identities is analysed and the algebraic proof of the renormalizability of the model is obtained to all orders in a loop expansion. 29 pages, no figures, new references and an appendix added |
Databáze: | OpenAIRE |
Externí odkaz: |