Perfect forms, K-theory and the cohomology of modular groups
Autor: | Philippe Elbaz-Vincent, Herbert Gangl, Christophe Soulé |
---|---|
Přispěvatelé: | Institut Fourier (IF), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Department of Mathematical Sciences, University of Durham, Durham University, Institut des Hautes Etudes Scientifiques (IHES), IHES, Institut Fourier (IF ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Elbaz-Vincent, Philippe |
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: |
modular groups
General Mathematics Group cohomology Homology (mathematics) 01 natural sciences K-theory of integers [MATH.MATH-KT] Mathematics [math]/K-Theory and Homology [math.KT] Combinatorics group cohomology machine calculations 11H55 11F75 11F06 11Y99 19D50 55N91 20J06 57-04 0103 physical sciences 0101 mathematics Mathematics Voronoï complex business.industry 010102 general mathematics Perfect forms Steinberg modules Modular design Cohomology [MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] [MATH.MATH-KT]Mathematics [math]/K-Theory and Homology [math.KT] 010307 mathematical physics Voronoi diagram business [MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT] |
Zdroj: | Advances in Mathematics |
Popis: | For N = 5 , 6 and 7, using the classification of perfect quadratic forms, we compute the homology of the Voronoi cell complexes attached to the modular groups SL N ( Z ) and G L N ( Z ) . From this we deduce the rational cohomology of those groups and some information about K m ( Z ) , when m = 5 , 6 and 7. |
Databáze: | OpenAIRE |
Externí odkaz: |