Stellate neurons in rat dorsal cochlear nucleus studies with combined Golgi impregnation and electron microscopy: synaptic connections and mutual coupling by gap junctions

Autor: F. G. Wouterlood, Enrico Mugnaini, Kirsten K. Osen, Anne-Lise Dahl
Rok vydání: 1984
Předmět:
Zdroj: Journal of neurocytology. 13(4)
ISSN: 0300-4864
Popis: Stellate neurons in the outer two layers of the rat dorsal cochlear nucleus (DCN) were studied by the Golgi-EM method. Stellate cell bodies are usually spherical or ovoidal and range from 9 microns to 14 microns in mean diameter. The smallest cells are situated underneath the ependymal layer and the largest cells in layer 2. Primary dendrites are short, thin and smooth and arise abruptly from the perikaryon, without a tapering main stem. Meandering secondary and tertiary dendrites extend in all directions, carry few pleomorphic spines lacking a spine apparatus and often show artifactual beading. The axons are impregnated only for a short distance (10-45 microns). The nucleus is indented, the nucleolus varies in position, and the chromatin, evenly dispersed in the centre, forms small clumps along the nuclear envelope. The cytoplasm is rich in free polyribosomes and contains scattered cisterns of granular endoplasmic reticulum. Varicosities of thin fibres, containing round synaptic vesicles, form asymmetric synapses on perikarya, dendritic shafts and spines of stellate cells. Such fibres run parallel to the long axis of the DCN or are oriented radially and are interpreted as axons of cochlear granule cells. Two kinds of bouton containing pleomorphic vesicles, one kind electron lucent and the other electron dense, form symmetric synapses on perikarya and dendritic shafts of stellate cells. The lucent boutons occur more frequently than the dense boutons, especially on the distal dendritic branches. The boutons with pleomorphic vesicles presumably represent terminals of local circuit neurons, probably the stellate and cartwheel cells. In addition, stellate cells show numerous dendro-somatic and dendro-dendritic appositions characterized by gap junctions and puncta adhaerentia. Most of the dendrites involved in these appositions resemble stellate cell dendrites and it is concluded that DCN stellate cells are coupled electrotonically with one another. The axons of stellate cells acquire a thin myelin sheath. Since the Golgi impregnation did not stain axons of stellate cells past this point, we were unable to demonstrate the synaptic targets of stellate cells.
Databáze: OpenAIRE