Performance indicators in multiobjective optimization

Autor: Dominique Cartier, Sébastien Le Digabel, Jean Bigeon, Charles Audet, Ludovic Salomon
Přispěvatelé: Groupe d’études et de recherche en analyse des décisions (GERAD), École Polytechnique de Montréal (EPM)-McGill University = Université McGill [Montréal, Canada]-HEC Montréal (HEC Montréal)-Université du Québec à Montréal = University of Québec in Montréal (UQAM), Système d’Information, conception RobustE des Produits (G-SCOP_SIREP), Laboratoire des sciences pour la conception, l'optimisation et la production (G-SCOP), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: European Journal of Operational Research
European Journal of Operational Research, Elsevier, 2020, 292 (2), pp.397-422. ⟨10.1016/j.ejor.2020.11.016⟩
ISSN: 0377-2217
DOI: 10.1016/j.ejor.2020.11.016⟩
Popis: International audience; In recent years, the development of new algorithms for multiobjective optimization has considerably grown. A large number of performance indicators has been introduced to measure the quality of Pareto front approximations produced by these algorithms. In this work, we propose a review of a total of 63 performance indicators partitioned into four groups according to their properties: cardinality, convergence, distribution and spread. Applications of these indicators are presented as well.
Databáze: OpenAIRE