Some Axioms for Mathematics

Autor: Blanqui, Frédéric, Dowek, Gilles, Grienenberger, Émilie, Hondet, Gabriel, Thiré, François
Přispěvatelé: Deduction modulo, interopérabilité et démonstration automatique (DEDUCTEAM), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Méthodes Formelles (LMF), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), Nomadic Labs
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: FSCD 2021-6th International Conference on Formal Structures for Computation and Deduction
FSCD 2021-6th International Conference on Formal Structures for Computation and Deduction, Jul 2021, Buenos Aires / Virtual, Argentina. ⟨10.4230/LIPIcs.FSCD.2021.20⟩
DOI: 10.4230/LIPIcs.FSCD.2021.20⟩
Popis: The λΠ-calculus modulo theory is a logical framework in which many logical systems can be expressed as theories. We present such a theory, the theory {U}, where proofs of several logical systems can be expressed. Moreover, we identify a sub-theory of {U} corresponding to each of these systems, and prove that, when a proof in {U} uses only symbols of a sub-theory, then it is a proof in that sub-theory.
LIPIcs, Vol. 195, 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021), pages 20:1-20:19
Databáze: OpenAIRE