Geometrias finitas, loops e quasigrupos relacionados

Autor: Diana Rasskazova
Přispěvatelé: Ivan Chestakov, Alexandre Grichkov, Henrique Guzzo Junior, Plamen Emilov Kochloukov, Alexandr Kornev, Dmitry Logachev
Rok vydání: 2019
Zdroj: Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo (USP)
instacron:USP
DOI: 10.11606/t.45.2019.tde-25092019-125549
Popis: Este trabalho é sobre as geométrias finitas com 3 ou 4 pontos na cada reta e os loops e qiasigrupos relacionados. Em caso de 3 pontos na cada reta descrevemos o loop de Steiner correspondente livre e calculamos o grupo de automorfismos em caso de 3 geradores livres. Além disso descrevemos os loopos de Steiner nilpotentes de clase dois e classificamos estes loopos com 3 geradores. Em caso de 4 pontos na cada reta construimos as geometrias novas atraves de expanção central de um análogo não comutativo do quasigrupo de Steiner. Temos fortes indícios que esta construção é universal em algum sentido. This work is about finite geometries with 3 or 4 points on every line and related loops and quasigroups. In the case of 3 points on any line we describe the structure of free loops in the variety of corresponding Steiner loops and we calculate the group of automorphisms of free Steiner loop with three generators. We describe the structure of nilpotent class two Steiner loops and classifiy all such loops with three generators. In the case of 4 points on a line we constructe new series of such geometries as central extension of corresponding non-commutative Steiner quasigroups. We conjecture that those geometries are universal in some sense.
Databáze: OpenAIRE