Fast and Accurate Amyloid Brain PET Quantification Without MRI Using Deep Neural Networks

Autor: Seung Kwan, Kang, Daewoon, Kim, Seong A, Shin, Yu Kyeong, Kim, Hongyoon, Choi, Jae Sung, Lee
Rok vydání: 2022
Předmět:
Zdroj: Journal of Nuclear Medicine. 64:659-666
ISSN: 2159-662X
0161-5505
DOI: 10.2967/jnumed.122.264414
Popis: This paper proposes a novel method for the automatic quantification of amyloid positron emission tomography (PET) using the deep learning (DL)-based spatial normalization (SN) of PET images, which does not require magnetic resonance imaging (MRI) or computed tomography images of the same patient. The accuracy of the method was evaluated for three different amyloid PET radiotracers compared to MRI-parcellation-based PET quantification using FreeSurfer.
Databáze: OpenAIRE