Fast and Accurate Amyloid Brain PET Quantification Without MRI Using Deep Neural Networks
Autor: | Seung Kwan, Kang, Daewoon, Kim, Seong A, Shin, Yu Kyeong, Kim, Hongyoon, Choi, Jae Sung, Lee |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Journal of Nuclear Medicine. 64:659-666 |
ISSN: | 2159-662X 0161-5505 |
DOI: | 10.2967/jnumed.122.264414 |
Popis: | This paper proposes a novel method for the automatic quantification of amyloid positron emission tomography (PET) using the deep learning (DL)-based spatial normalization (SN) of PET images, which does not require magnetic resonance imaging (MRI) or computed tomography images of the same patient. The accuracy of the method was evaluated for three different amyloid PET radiotracers compared to MRI-parcellation-based PET quantification using FreeSurfer. |
Databáze: | OpenAIRE |
Externí odkaz: |