A mountaineering strategy to excited states: highly-accurate oscillator strengths and dipole moments of small molecules
Autor: | Amara Chrayteh, Denis Jacquemin, Aymeric Blondel, Pierre-François Loos |
---|---|
Přispěvatelé: | Modélisation Et Spectroscopie (ModES), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Physics
Chemical Physics (physics.chem-ph) Work (thermodynamics) 010304 chemical physics Basis (linear algebra) Series (mathematics) Oscillator strength FOS: Physical sciences Computational Physics (physics.comp-ph) 01 natural sciences 3. Good health Computer Science Applications [CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry Dipole Excited state Physics - Chemical Physics 0103 physical sciences Limit (mathematics) Physical and Theoretical Chemistry Atomic physics Physics::Chemical Physics Physics - Computational Physics Basis set |
Zdroj: | Journal of Chemical Theory and Computation Journal of Chemical Theory and Computation, American Chemical Society, 2021, 17 (1), pp.416-438. ⟨10.1021/acs.jctc.0c01111⟩ Journal of Chemical Theory and Computation, 2021, 17 (1), pp.416-438. ⟨10.1021/acs.jctc.0c01111⟩ |
ISSN: | 1549-9618 1549-9626 |
DOI: | 10.1021/acs.jctc.0c01111⟩ |
Popis: | This work presents a series of highly-accurate excited-state properties obtained using high-order coupled-cluster (CC) calculations performed with a series of diffuse containing basis sets, as well as extensive comparisons with experimental values. Indeed, we have computed both the main ground-to-excited transition property, the oscillator strength, as well as the ground- and excited-state dipole moments, considering {thirteen} small molecules (hydridoboron, hydrogen chloride, water, hydrogen sulfide, boron fluoride, carbon monoxide, dinitrogen, ethylene, formaldehyde, thioformaldehyde, nitroxyl, {fluorocarbene}, and silylidene). We systematically include corrections up to the quintuple (CCSDTQP) in the CC expansion and extrapolate to the complete basis set limit. When comparisons with experimental measurements are possible, that is, when a number of consistent experimental data can be found, theory typically provides values falling within the experimental error bar for the excited-state properties. Besides completing our previous studies focussed on transition energies (\textit{J.~Chem.~Theory Comput.} \textbf{14} (2018) 4360--4379, \textit{ibid.}~\textbf{15} (2019) 1939--1956, \textit{ibid.}~\textbf{16} (2020) 1711--1741, and \textit{ibid.}~\textbf{16} (2020) 3720--3736), this work also provides ultra-accurate dipoles and oscillator strengths that could be employed for future theoretical benchmarks. Comment: 24 pages (Supp. Mat. available) |
Databáze: | OpenAIRE |
Externí odkaz: |