Some New q—Integral Inequalities Using Generalized Quantum Montgomery Identity via Preinvex Functions

Autor: Jorge Eliecer Hernández Hernández, Artion Kashuri, Rozana Liko, Miguel J. Vivas-Cortez
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Symmetry, Vol 12, Iss 553, p 553 (2020)
Symmetry
Volume 12
Issue 4
ISSN: 2073-8994
Popis: In this work the authors establish a new generalized version of Montgomery&rsquo
s identity in the setting of quantum calculus. From this result, some new estimates of Ostrowski type inequalities are given using preinvex functions. Given the generality of preinvex functions, particular q - integral inequalities are established with appropriate choice of the parametric bifunction. Some new special cases from the main results are obtained and some known results are recaptured as well. At the end, a briefly conclusion is given.
Databáze: OpenAIRE