Some New q—Integral Inequalities Using Generalized Quantum Montgomery Identity via Preinvex Functions
Autor: | Jorge Eliecer Hernández Hernández, Artion Kashuri, Rozana Liko, Miguel J. Vivas-Cortez |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Physics and Astronomy (miscellaneous)
Inequality General Mathematics media_common.quotation_subject Type (model theory) Quantum calculus 01 natural sciences ϕ-convex functions Quantum Montgomery identity Computer Science (miscellaneous) integral inequalities 0101 mathematics Hardware_ARITHMETICANDLOGICSTRUCTURES Quantum media_common Parametric statistics Mathematics Generality lcsh:Mathematics 010102 general mathematics lcsh:QA1-939 010101 applied mathematics Algebra Chemistry (miscellaneous) Identity (philosophy) Computer Science::Programming Languages |
Zdroj: | Symmetry, Vol 12, Iss 553, p 553 (2020) Symmetry Volume 12 Issue 4 |
ISSN: | 2073-8994 |
Popis: | In this work the authors establish a new generalized version of Montgomery&rsquo s identity in the setting of quantum calculus. From this result, some new estimates of Ostrowski type inequalities are given using preinvex functions. Given the generality of preinvex functions, particular q - integral inequalities are established with appropriate choice of the parametric bifunction. Some new special cases from the main results are obtained and some known results are recaptured as well. At the end, a briefly conclusion is given. |
Databáze: | OpenAIRE |
Externí odkaz: |