(Theta, triangle)‐free and (even hole, K4)‐free graphs. Part 2: Bounds on treewidth
Autor: | Nicolas Trotignon, Ni Luh Dewi Sintiari, Stéphan Thomassé, Marcin Pilipczuk |
---|---|
Přispěvatelé: | Modèles de calcul, Complexité, Combinatoire (MC2), Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), University of Warsaw (UW), ANR-19-CE48-0013,DIGRAPHS,Digraphes(2019), ANR-10-LABX-0070,MILYON,Community of mathematics and fundamental computer science in Lyon(2010), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
FOS: Computer and information sciences
Even-hole-free graph Discrete Mathematics (cs.DM) 010102 general mathematics 0102 computer and information sciences [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] 01 natural sciences Treewidth Combinatorics 010201 computation theory & mathematics Computer Science::Discrete Mathematics Independent set FOS: Mathematics Mathematics - Combinatorics Discrete Mathematics and Combinatorics Geometry and Topology Combinatorics (math.CO) 0101 mathematics Computer Science - Discrete Mathematics Mathematics |
Zdroj: | Journal of Graph Theory Journal of Graph Theory, Wiley, 2021, 97 (4), pp.624-641. ⟨10.1002/jgt.22675⟩ Journal of Graph Theory, 2021, 97 (4), pp.624-641. ⟨10.1002/jgt.22675⟩ |
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.22675⟩ |
Popis: | International audience; A {\em theta} is a graph made of three internally vertex-disjoint chordless paths $P_1 = a \dots b$, $P_2 = a \dots b$, $P_3 = a \dots b$ of length at least~2 and such that no edges exist between the paths except the three edges incident to $a$ and the three edges incident to $b$. A {\em pyramid} is a graph made of three chordless paths $P_1 = a \dots b_1$, $P_2 = a \dots b_2$, $P_3 = a \dots b_3$ of length at least~1, two of which have length at least 2, vertex-disjoint except at $a$, and such that $b_1b_2b_3$ is a triangle and no edges exist between the paths except those of the triangle and the three edges incident to~$a$. An \emph{even hole} is a chordless cycle of even length. For three non-negative integers $i\leq j\leq k$, let $S_{i,j,k}$ be the tree with a vertex $v$, from which start three paths with $i$, $j$, and $k$ edges respectively. We denote by $K_t$ the complete graph on $t$ vertices. We prove that for all non-negative integers $i, j, k$, the class of graphs that contain no theta, no $K_3$, and no $S_{i, j, k}$ as induced subgraphs have bounded treewidth. We prove that for all non-negative integers $i, j, k, t$, the class of graphs that contain no even hole, no pyramid, no $K_t$, and no $S_{i, j, k}$ as induced subgraphs have bounded treewidth. To bound the treewidth, we prove that every graph of large treewidth must contain a large clique or a minimal separator of large cardinality. |
Databáze: | OpenAIRE |
Externí odkaz: |