Singularity of random symmetric matrices revisited

Autor: Marcelo Campos, Matthew Jenssen, Marcus Michelen, Julian Sahasrabudhe
Rok vydání: 2022
Předmět:
Zdroj: Proceedings of the American Mathematical Society. 150:3147-3159
ISSN: 1088-6826
0002-9939
DOI: 10.1090/proc/15807
Popis: Let $M_n$ be drawn uniformly from all $\pm 1$ symmetric $n \times n$ matrices. We show that the probability that $M_n$ is singular is at most $\exp(-c(n\log n)^{1/2})$, which represents a natural barrier in recent approaches to this problem. In addition to improving on the best-known previous bound of Campos, Mattos, Morris and Morrison of $\exp(-c n^{1/2})$ on the singularity probability, our method is different and considerably simpler.
12 pages
Databáze: OpenAIRE