Organic micropollutants’ distribution within sludge organic matter fractions explains their dynamic during sewage sludge anaerobic digestion followed by composting
Autor: | Sabine Houot, Nadine Delgenès, Nicolas Doussiet, Dominique Patureau, Alice Danel, Julie Jimenez, Quentin Aemig |
---|---|
Přispěvatelé: | Laboratoire de Biotechnologie de l'Environnement [Narbonne] (LBE), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de la Recherche Agronomique (INRA), Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, ADEME (PhD Grant), AFB (Project n°Action 12-5-1) |
Rok vydání: | 2019 |
Předmět: |
anaerobic digestion
[SDV]Life Sciences [q-bio] Health Toxicology and Mutagenesis polycyclic aromatic hydrocarbons Chemical Fractionation 010501 environmental sciences Waste Disposal Fluid 01 natural sciences chemistry.chemical_compound Benzo(a)pyrene Environmental Chemistry Organic matter organic matter 0105 earth and related environmental sciences Biological Oxygen Demand Analysis Fluoranthene chemistry.chemical_classification Fluorenes Sewage Soil organic matter Chemical oxygen demand General Medicine Biodegradation Pollution 6. Clean water accessibility Anaerobic digestion Biodegradation Environmental chemistry nonylphenols Environmental chemistry [SDE]Environmental Sciences composting Pyrene Water Pollutants Chemical Sludge |
Zdroj: | Environmental Science and Pollution Research Environmental Science and Pollution Research, Springer Verlag, 2019, 26 (6), pp.5820-5830. ⟨10.1007/s11356-018-4014-7⟩ |
ISSN: | 1614-7499 0944-1344 |
DOI: | 10.1007/s11356-018-4014-7 |
Popis: | International audience; The simultaneous fate of organic matter and 4 endocrine disruptors (3 polycyclic aromatic hydrocarbons (PAHs) (fluoranthene, benzo(b)fluoranthene, and benzo(a)pyrene) and nonylphenols (NP)) was studied during the anaerobic digestion followed by composting of sludge at lab-scale. Sludge organic matter was characterized, thanks to chemical fractionation and 3D fluorescence deciphering its accessibility and biodegradability. Total chemical oxygen demand (COD) removal was 41% and 56% during anaerobic digestion and composting, respectively. 3D fluorescence highlighted the quality changes of organic matter. During continuous anaerobic digestion, organic micropollutants' removal was 22±14%, 6±5%, 18±9%, and 0% for fluoranthene, benzo(b)fluoranthene, benzo(a)pyrene, and nonylphenols, respectively. Discontinuous composting allowed to go further on the organic micropollutants' removal as 34±8%, 31±20%, 38±10%, and 52±6% of fluoranthene, benzo(b)fluoranthene, benzo(a)pyrene, and nonylphenols were dissipated, respectively. Moreover, the accessibility of PAH and NP expressed by their presence in the various sludge organic matter fractions and its evolution during both treatments was linked to both the quality evolution of the organic matter and the physicochemical properties of the PAH and NP; the presence in most accessible fractions explained the amount of PAH and NP dissipated. |
Databáze: | OpenAIRE |
Externí odkaz: |