Langevin process reflected on a partially elastic boundary I

Autor: Emmanuel Jacob
Přispěvatelé: Laboratoire de Probabilités et Modèles Aléatoires (LPMA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Jacob, Emmanuel
Jazyk: angličtina
Rok vydání: 2010
Předmět:
Zdroj: Stochastic Processes and their Applications
Stochastic Processes and their Applications, Elsevier, 2012, 122 (1), pp.191-216
Stochastic Processes and their Applications, 2012, 122 (1), pp.191-216. ⟨10.1016/j.spa.2011.08.003⟩
ISSN: 0304-4149
1879-209X
DOI: 10.1016/j.spa.2011.08.003⟩
Popis: Consider a Langevin process, that is an integrated Brownian motion, constrained to stay on the nonnegative half-line by a partially elastic boundary at 0. If the elasticity coefficient of the boundary is greater than or equal to a critical value (0.16), bounces will not accumulate in a finite time when the process starts from the origin with strictly positive velocity. We will show that there exists then a unique entrance law from the boundary with zero velocity, despite the immediate accumulation of bounces. This result of uniqueness is in sharp contrast with the literature on deterministic second order reflection. Our approach uses certain properties of real-valued random walks and a notion of spatial stationarity which may be of independent interest.
30 pages, 1 figure. In this new version, the introduction and the preliminaries in particular have been rewritten (for a dramatic change)
Databáze: OpenAIRE