Statistical distribution of the Stern sequence

Autor: Sandro Bettin, Lukas Spiegelhofer, Sary Drappeau
Přispěvatelé: Dipartimento di Matematica [Genova], Università degli studi di Genova = University of Genoa (UniGe), Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Institut für Diskrete Mathematik und Geometrie [Wien], Vienna University of Technology (TU Wien), Universita degli studi di Genova
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Commentarii Mathematici Helvetici
Commentarii Mathematici Helvetici, 2019, 94 (2), pp.241-271. ⟨10.4171/CMH/460⟩
Commentarii Mathematici Helvetici, European Mathematical Society, 2019, 94 (2), pp.241-271. ⟨10.4171/CMH/460⟩
ISSN: 0010-2571
1420-8946
DOI: 10.4171/CMH/460⟩
Popis: We prove that the Stern diatomic sequence is asymptotically distributed according to a normal law, on a logarithmic scale. This is obtained by studying complex moments, and the analytic properties of a transfer operator.
Comment: 13 pages
Databáze: OpenAIRE