Statistical distribution of the Stern sequence
Autor: | Sandro Bettin, Lukas Spiegelhofer, Sary Drappeau |
---|---|
Přispěvatelé: | Dipartimento di Matematica [Genova], Università degli studi di Genova = University of Genoa (UniGe), Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Institut für Diskrete Mathematik und Geometrie [Wien], Vienna University of Technology (TU Wien), Universita degli studi di Genova |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Logarithmic scale
General Mathematics [MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] Central limit theorem 0102 computer and information sciences Dynamical Systems (math.DS) Central limit theorem Stern diatomic sequence Transfer operator 01 natural sciences Stern diatomic sequence 11B83 11B57 (Primary) 37C30 37A45 (Secondary) Transfer operator Physics::Atomic and Molecular Clusters FOS: Mathematics Number Theory (math.NT) 0101 mathematics Mathematics - Dynamical Systems Mathematics Sequence Mathematics - Number Theory 010102 general mathematics Mathematical analysis 16. Peace & justice Diatomic molecule [MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] Stern Distribution (mathematics) 010201 computation theory & mathematics |
Zdroj: | Commentarii Mathematici Helvetici Commentarii Mathematici Helvetici, 2019, 94 (2), pp.241-271. ⟨10.4171/CMH/460⟩ Commentarii Mathematici Helvetici, European Mathematical Society, 2019, 94 (2), pp.241-271. ⟨10.4171/CMH/460⟩ |
ISSN: | 0010-2571 1420-8946 |
DOI: | 10.4171/CMH/460⟩ |
Popis: | We prove that the Stern diatomic sequence is asymptotically distributed according to a normal law, on a logarithmic scale. This is obtained by studying complex moments, and the analytic properties of a transfer operator. Comment: 13 pages |
Databáze: | OpenAIRE |
Externí odkaz: |