Matrix-valued Impedances with Fractional Derivatives and Integrals in Boundary Feedback Control : a Port-Hamiltonian approach
Autor: | Denis Matignon, Yann Le Gorrec |
---|---|
Přispěvatelé: | Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Centre National de la Recherche Scientifique - CNRS (FRANCE), Ecole Nationale Supérieure de Mécanique et des Microtechniques - ENSMM (FRANCE), Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE), Université de Franche-Comté (FRANCE), Université de Technologie de Belfort-Montbéliard - UTBM (FRANCE) |
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
Fractional differential equations
Numerical analysis Multivariable calculus Mathematical analysis Passivity [INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] Impedance matching Diffusive systems Mathématiques générales Boundary control of PDEs Fractional calculus [SPI.AUTO]Engineering Sciences [physics]/Automatic symbols.namesake Pseudo-differential operators Control and Systems Engineering symbols Dissipative system Hereditary mechanics Numerical methods Hamiltonian (quantum mechanics) Electrical impedance Stability Mathematics |
Zdroj: | Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control, Jul 2015, Lyon, France |
Popis: | International audience; This paper discusses the passivity of the port-Hamiltonian formulation of a multivariable impedance matching boundary feedback of fractional order, expressed through diffusive representation. It is first shown in the 1D-wave equation case that the impedance matching boundary feedback can be written as a passive feedback on the boundary port variables. In the Euler-Bernoulli case, the impedance matching feedback matrix involves fractional derivatives and integrals. It is shown that the usual diffusive representation of such feedback is not formally a dissipative port-Hamiltonian system, even if from a frequency point of view this feedback proves passive. |
Databáze: | OpenAIRE |
Externí odkaz: |