Autor: |
Jianmin, Li, Wei, Zeng, Hong, Liu, Mengjia, Zhan, HaoHao, Miao |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Environmental Research. 213:113653 |
ISSN: |
0013-9351 |
DOI: |
10.1016/j.envres.2022.113653 |
Popis: |
Different from anammox, the combination of Fe (III) reduction coupled to anaerobic ammonium oxidation (Feammox) and nitrate/nitrite dependent ferrous oxidation (NDFO) do not require to control nitrite accumulation. Furthermore, sponge iron can avoid continuous iron supplementation in practice and is a good iron source for the occurrence of Feammox and NDFO in wastewater treatment. Therefore, a biofilter using sponge iron as carrier treating low nitrogen wastewater was built. In this study, the performances of nitrogen removal were explored under different hydraulic retention times (HRT) and gas-water ratios in sponge iron biofilter. And the pathways of nitrogen removal were analyzed by activity tests. The results showed ammonia removal efficiency reached 94.1% and total inorganic nitrogen removal efficiency was up to 70.6% at HRT of 19 h and gas-water ratio of 18. Compared to nitrogen removal by adsorption under non-aeration, the activity tests showed that total inorganic nitrogen loss was caused by Feammox and NDFO after aeration. The results of microbial communities showed that appearances of nitrifier-Nitrosomonadaceae, Feammox bacteria-Clostridiaceae and NDFO bacteria-Gallionellaceae resulted in deep nitrogen removal after aeration, in which Nitrosomonadaceae and Clostridiaceae contributed to ammonia removal and Gallionellaceae contributed to nitrite/nitrate reduction to nitrogen gas. Therefore, it was feasible to achieve deep autotrophic nitrogen removal and Fe (II) and Fe (III) cycle in sponge iron biofilter. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|