Stochastic Resolution of Identity for Real-Time Second-Order Green’s Function: Ionization Potential and Quasi-Particle Spectrum
Autor: | Tyler Y. Takeshita, Roi Baer, Wenjie Dou, Eran Rabani, Ming Chen, Daniel Neuhauser |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Journal of Chemical Theory and Computation. 15:6703-6711 |
ISSN: | 1549-9626 1549-9618 |
Popis: | We develop a stochastic resolution of identity approach to the real-time second-order Green's function (real-time sRI-GF2) theory, extending our recent work for imaginary-time Matsubara Green's function [ Takeshita et al. J. Chem. Phys. 2019 , 151 , 044114 ]. The approach provides a framework to obtain the quasi-particle spectra across a wide range of frequencies and predicts ionization potentials and electron affinities. To assess the accuracy of the real-time sRI-GF2, we study a series of molecules and compare our results to experiments as well as to a many-body perturbation approach based on the GW approximation, where we find that the real-time sRI-GF2 is as accurate as self-consistent GW. The stochastic formulation reduces the formal computatinal scaling from O(Ne5) down to O(Ne3) where Ne is the number of electrons. This is illustrated for a chain of hydrogen dimers, where we observe a slightly lower than cubic scaling for systems containing up to Ne ≈ 1000 electrons. |
Databáze: | OpenAIRE |
Externí odkaz: |