Dark-cutting beef: A brief review and an integromics meta-analysis at the proteome level to decipher the underlying pathways
Autor: | Robyn D. Warner, Brigitte Picard, Declan J. Troy, Igor Tomasevic, Ranjith Ramanathan, Peter P. Purslow, José M. Lorenzo, Mohammed Gagaoua, Daniel Franco, María López-Pedrouso, E.M. Claudia Terlouw, Anne Maria Mullen |
---|---|
Přispěvatelé: | Teagasc Ashtown Food Research Centre (Teagasc), University of Melbourne, CIVETAN, Oklahoma State University [Stillwater], Universidade de Santiago de Compostela [Spain] (USC ), Centro tecnologico de la Carne de Galicia, Universidade de Vigo, University of Belgrade [Belgrade], Unité Mixte de Recherche sur les Herbivores - UMR 1213 (UMRH), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Meat Technology IrelandTC 2016 002713654 |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Protein biomarkers
Proteome [SDV]Life Sciences [q-bio] Color Muscle Proteins Computational biology Biology Proteomics Meat tenderness 0404 agricultural biotechnology Foodomics Animals Muscle Skeletal TCA cycle 2. Zero hunger pH 0402 animal and dairy science food and beverages 04 agricultural and veterinary sciences Hydrogen-Ion Concentration 040401 food science 040201 dairy & animal science Muscle structure Mitochondria meat color Red Meat Metabolism Meta-analysis Red meat DECIPHER OMICs Cattle DFD Biomarkers Food Science |
Zdroj: | Meat Science Meat Science, Elsevier, 2021, 181, pp.108611. ⟨10.1016/j.meatsci.2021.108611⟩ |
ISSN: | 0309-1740 |
Popis: | International audience; Comprehensive characterization of the post-mortem muscle proteome defines a fundamental goal in meat proteomics. During the last decade, proteomics tools have been applied in the field of foodomics to help decipher factors underpinning meat quality variations and to enlighten us, through data-driven methods, on the underlying mechanisms leading to meat quality defects such as dark-cutting meat known also as dark, firm and dry (DFD) meat. In cattle, several proteomics studies have focused on the extent to which changes in the post-mortem muscle proteome relate to dark-cutting beef development. The present data-mining study firstly reviews proteomics studies which investigated dark-cutting beef, and secondly, gathers the protein biomarkers that differ between dark-cutting versus beef with normal-pH in a unique repertoire. A list of 130 proteins from eight eligible studies was curated and mined through bioinformatics for Gene Ontology annotations, molecular pathways enrichments, secretome analysis and biological pathways comparisons to normal beef color from a previous meta-analysis. The major biological pathways underpinning dark-cutting beef at the proteome level have been described and deeply discussed in this integromics study. |
Databáze: | OpenAIRE |
Externí odkaz: |