Phytochemical and pharmacological review of diterpenoids from the genus Euphorbia Linn (2012-2021)

Autor: Huan Zhao, Lei Sun, ChuiHao Kong, WenLi Mei, HaoFu Dai, FengQing Xu, ShengZhuo Huang
Rok vydání: 2022
Předmět:
Zdroj: Journal of ethnopharmacology. 298
ISSN: 1872-7573
Popis: Euphorbia is one of the major genera in angiosperms, which is widely distributed all over the world, including Asia, Africa and Central and South America. The roots or tubers of Euphorbia are famous for medicinal purposes, especially in China. Many of them, such as Euphorbia pekinensis Rupr, Euphorbia fischeriana Steud and Euphorbia Kansui S.L.Liou ex S.B.Ho. . are used as Chinese herbal medicines.This paper reviews the diterpenoids isolated from the genus Euphorbia species and the pharmacological activities of these compounds to evaluate its traditional use and potential future development.Information on the studies of the genus Euphorbia Linn was collected from scientific journals, books and reports via library and electronic data search (Scifinder, Web of Science, PubMed, Elsevier, Scopus, Google Scholar, Springer, Science Direct, Wiley, ACS, CNKI and Kew Plants of the Word Online). Meanwhile, it was also obtained from published works of material medica, folk records, ethnophmacological literatures, Ph.D. and Masters dissertations.Known as the main constituents of the genus Euphorbia Linn, Diterpenoids possess many pharmacological properties such as anti-inflammation, antiviral activities and cytotoxicity. To date, various types of diterpenoids were identified from this genus, including isopimarane, rosane, abietane, ent-kaurane, ent-atisane. cembrane, casbane, lathyrane, myrsinane, jatropholane, tigliane, ingenane, jatrophane, paraliane, pepluane, and euphoractin.This review describes 14 types of diterpenoid isolated from 45 Euphorbia species from 2012 to 2021, a total of 615 compounds. Among them, mainly include jatrophane (171), lathyrane (92), myrsinane (62), abietane (70), ent-atisane (36), ent-kaurane (7), tigliane (26) and ingenane (19). The possible biological pathways of these compounds were presumed. At the same time, more than 10 biological activities of these compounds were summarized, such as anti-inflammation, antiviral activities and cytotoxicity.
Databáze: OpenAIRE