First-order equivalent to Einstein-Hilbert Lagrangian
Autor: | E. Rosado María, J. Muñoz Masqué, M. Castrillón López |
---|---|
Rok vydání: | 2014 |
Předmět: |
Matemáticas
General relativity Statistical and Nonlinear Physics symbols.namesake Classical mechanics Lagrangian relaxation Inverse problem for Lagrangian mechanics Luke's variational principle symbols Covariant transformation Einstein Hamiltonian (quantum mechanics) Mathematics::Symplectic Geometry Mathematical Physics Lagrangian Mathematics |
Zdroj: | Journal of Mathematical Physics, ISSN 0022-2488, 2014, Vol. 55, No. 8 Archivo Digital UPM instname |
ISSN: | 1089-7658 0022-2488 |
DOI: | 10.1063/1.4890555 |
Popis: | A first-order Lagrangian L ∇ variationally equivalent to the second-order Einstein- Hilbert Lagrangian is introduced. Such a Lagrangian depends on a symmetric linear connection, but the dependence is covariant under diffeomorphisms. The variational problem defined by L ∇ is proved to be regular and its Hamiltonian formulation is studied, including its covariant Hamiltonian attached to ∇ . |
Databáze: | OpenAIRE |
Externí odkaz: |