An interacting particle model and a Pieri-type formula for the orthogonal group
Autor: | Manon Defosseux |
---|---|
Přispěvatelé: | Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145), Université Paris Descartes - Paris 5 (UPD5)-Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS), Mathématiques Appliquées à Paris 5 ( MAP5 - UMR 8145 ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National des Sciences Mathématiques et de leurs Interactions-Centre National de la Recherche Scientifique ( CNRS ) |
Jazyk: | angličtina |
Rok vydání: | 2010 |
Předmět: |
Statistics and Probability
Pure mathematics random tiling Particle model General Mathematics Probability (math.PR) Type (model theory) Blocking (statistics) random matrices [MATH.MATH-PR]Mathematics [math]/Probability [math.PR] Pieri formula 97K50 Line (geometry) FOS: Mathematics interacting particles Orthogonal group Statistics Probability and Uncertainty Random matrix [ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR] Mathematics - Probability Mathematics |
Zdroj: | Journal of Theoretical Probability Journal of Theoretical Probability, Springer, 2012, pp.P 1-21. ⟨10.1007/s10959-012-0407-6⟩ Journal of Theoretical Probability, Sprnger, 2012, pp.P 1-21. 〈10.1007/s10959-012-0407-6〉 |
ISSN: | 0894-9840 1572-9230 |
DOI: | 10.1007/s10959-012-0407-6⟩ |
Popis: | We introduce a new interacting particles model with blocking and pushing interactions. Particles evolve on the positive line jumping on their own volition rightwards or leftwards according to geometric jumps with parameter q. We show that the model involves a Pieri-type formula for the orthogonal group. We prove that the two extreme cases - q=0 and q=1 - lead respectively to a random tiling model studied by Borodin and Kuan and to a random matrix model. 16 |
Databáze: | OpenAIRE |
Externí odkaz: |