Convergence rate of Markov chains and hybrid numerical schemes to jump-diffusions with application to the Bates model

Autor: Maya Briani, Lucia Caramellino, Giulia Terenzi
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: SIAM journal on numerical analysis
(2021).
info:cnr-pdr/source/autori:M. Briani, L. Caramellino, G. Terenzi/titolo:Convergence rate of Markov chains and hybrid numerical schemes to jump-diffusions with application to the Bates model/doi:/rivista:SIAM journal on numerical analysis (Print)/anno:2021/pagina_da:/pagina_a:/intervallo_pagine:/volume
Popis: We study the rate of weak convergence of Markov chains to diffusion processes under quite general assumptions. We give an example in the financial framework, applying the convergence analysis to a multiple jumps tree approximation of the CIR process. Then, we combine the Markov chain approach with other numerical techniques in order to handle the different components in jump- diffusion coupled models. We study the analytical speed of convergence of this hybrid approach and provide an example in finance, applying our results to a tree-finite difference approximation in the Heston and Bates models. © 2021 Society for Industrial and Applied Mathematics.
Databáze: OpenAIRE