Representations of the Lie algebra of vector fields on a sphere
Autor: | Yuly Billig, Jonathan Nilsson |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Pure mathematics
Algebra and Number Theory 010308 nuclear & particles physics 010102 general mathematics Monoidal category Algebraic variety 16. Peace & justice 01 natural sciences Set (abstract data type) 17B10 (Primary) 17B66 (Secondary) Category of modules Mathematics::Category Theory 0103 physical sciences Lie algebra FOS: Mathematics Vector field Affine transformation Representation Theory (math.RT) 0101 mathematics Simple module Mathematics - Representation Theory Mathematics |
Popis: | For an affine algebraic variety X we study a category of modules that admit compatible actions of both the algebra A of functions on X and the Lie algebra of vector fields on X . In particular, for the case when X is the sphere S 2 , we construct a set of simple modules that are finitely generated over A . In addition, we prove that the monoidal category that these modules generate is equivalent to the category of finite-dimensional rational GL 2 -modules. |
Databáze: | OpenAIRE |
Externí odkaz: |