Comparison of Credal Assignment Algorithms in Kinematic Data Tracking Context

Autor: François Delmotte, Samir Hachour, David Mercier
Přispěvatelé: Laboratoire de Génie Informatique et d'Automatique de l'Artois (LGI2A), Université d'Artois (UA)
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: Information Processing and Management of Uncertainty in Knowledge-Based Systems
Information Processing and Management of Uncertainty in Knowledge-Based Systems, 444, Springer International Publishing, pp.200-211, 2014, Communications in Computer and Information Science, ⟨10.1007/978-3-319-08852-5_21⟩
Information Processing and Management of Uncertainty in Knowledge-Based Systems ISBN: 9783319088518
IPMU (3)
DOI: 10.1007/978-3-319-08852-5_21⟩
Popis: This paper compares several assignment algorithms in a multi-target tracking context, namely: the optimal Global Nearest Neighbor algorithm (GNN) and a few based on belief functions. The robustness of the algorithms are tested in different situations, such as: nearby targets tracking, targets appearances management. It is shown that the algorithms performances are sensitive to some design parameters. It is shown that, for kinematic data based assignment problem, the credal assignment algorithms do not outperform the standard GNN algorithm.
Databáze: OpenAIRE