Spectroscopic optical coherence elastography
Autor: | David D. Sampson, Brendan F. Kennedy, Xing Liang, Renu John, Stephen A. Boppart, Steven G. Adie |
---|---|
Rok vydání: | 2010 |
Předmět: |
Materials science
Physics::Medical Physics Phase (waves) ocis:(170.6935) Tissue characterization Breast Neoplasms 02 engineering and technology 01 natural sciences Sensitivity and Specificity Imaging phantom ocis:(120.5820) Scattering measurements 010309 optics Optics Optical coherence tomography Electronic speckle pattern interferometry Cell Line Tumor Elastic Modulus 0103 physical sciences Image Interpretation Computer-Assisted medicine Animals medicine.diagnostic_test business.industry Phantoms Imaging Spectrum Analysis ocis:(120.5050) Phase measurement ocis:(350.0350) Elastography Reproducibility of Results Particle displacement Equipment Design 021001 nanoscience & nanotechnology Image Enhancement ocis:(110.4500) Optical coherence tomography Atomic and Molecular Physics and Optics Rats Vibration Equipment Failure Analysis Elasticity Imaging Techniques Research-Article Elastography Tomography 0210 nano-technology business Tomography Optical Coherence |
Zdroj: | Optics Express |
ISSN: | 1094-4087 |
Popis: | We present an optical technique to image the frequency-dependent complex mechanical response of a viscoelastic sample. Three-dimensional hyperspectral data, comprising two-dimensional B-mode images and a third dimension corresponding to vibration frequency, were acquired from samples undergoing external mechanical excitation in the audio-frequency range. We describe the optical coherence tomography (OCT) signal when vibration is applied to a sample and detail the processing and acquisition techniques used to extract the local complex mechanical response from three-dimensional data that, due to a wide range of vibration frequencies, possess a wide range of sample velocities. We demonstrate frequency-dependent contrast of the displacement amplitude and phase of a silicone phantom containing inclusions of higher stiffness. Measurements of an ex vivo tumor margin demonstrate distinct spectra between adipose and tumor regions, and images of displacement amplitude and phase demonstrated spatially-resolved contrast. Contrast was also observed in displacement amplitude and phase images of a rat muscle sample. These results represent the first demonstration of mechanical spectroscopy based on B-mode OCT imaging. Spectroscopic optical coherence elastography (S-OCE) provides a high-resolution imaging capability for the detection of tissue pathologies that are characterized by a frequency-dependent viscoelastic response. |
Databáze: | OpenAIRE |
Externí odkaz: |