Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions
Autor: | Marco Bindi, Behnam Ababaei, Senthold Asseng, Matthew P. Reynolds, Ehsan Eyshi Rezaei, Douglas J. Hunsaker, Heidi Webber, Bruce A. Kimball, Roberto Ferrise, Pierre Martre, Kurt Christian Kersebaum, Paul J. Pinter, Arne M. Ratjen, Adam Luig, Jerry L. Hatfield, Mikhail A. Semenov, Gerard W. Wall, Pierre Stratonovitch, Jordi Doltra, Steven W. Leavitt, Jeffrey W. White, Belay T. Kassie, Frank Ewert, Jørgen E. Olesen, Robert L. LaMorte, Henning Kage |
---|---|
Přispěvatelé: | Rheinische Friedrich-Wilhelms-Universität Bonn, USDA-ARS : Agricultural Research Service, Department of Agricultural and Biological Engineering [Gainesville] (UF|ABE), Institute of Food and Agricultural Sciences [Gainesville] (UF|IFAS), University of Florida [Gainesville] (UF)-University of Florida [Gainesville] (UF), Center for Development Research (ZEF), European Biological Control Laboratory, USDA-ARS (EBCL - USDA ARS), International Maize and Wheat Improvement Center (CIMMYT), Consultative Group on International Agricultural Research [CGIAR] (CGIAR), Écophysiologie des Plantes sous Stress environnementaux (LEPSE), Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), DISPAA, Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI), Catabrian Agricultural Research and Training Center (CIFA), Institute of Crop Science and Plant Breeding, Christian-Albrechts University of Kiel, Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF), Leibniz Association, Department of Agroecology, Aarhus University [Aarhus], Computational and Systems Biology Department, Rothamsted Research, Laboratory of Tree-Ring Research, University of Arizona, German Science Foundation (project EW 119/5-1), FACCE JPI MACSUR project (2812ERA115), Food Policy Research Institute (IFPRI) through the Global Futures and Strategic Foresight project, CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), CGIAR Research Program on Wheat, FACCE JPI MACSUR project (031A103B), metaprogram Adaptation of Agriculture and Forests to Climate Change (AAFCC) INRA, JPI FACCE MACSUR, JPI FACCE MACSUR2, German Science Foundation (project KA 3046/8-1) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Canopy
010504 meteorology & atmospheric sciences STOMATAL CONDUCTANCE AIR CO2 ENRICHMENT Energy balance Soil Science Climate change klim Canopy temperature Atmospheric sciences 01 natural sciences Heat stress climate change impact assessment SPRING WHEAT Atmospheric instability [SDV.BV]Life Sciences [q-bio]/Vegetal Biology FARMING SYSTEMS Robustness (economics) Heat and drought interactions Crop model improvement WHEAT EVAPOTRANSPIRATION 0105 earth and related environmental sciences 2. Zero hunger CLIMATE-CHANGE MULTIMODEL ENSEMBLES Simulation modeling Climate change impact assessments 04 agricultural and veterinary sciences 15. Life on land [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ELEVATED CARBON-DIOXIDE Stability conditions Agronomy heat and drought interaction 13. Climate action Soil water Wheat 040103 agronomy & agriculture 0401 agriculture forestry and fisheries Environmental science WATER-USE EFFICIENCY DROUGHT-STRESS Agronomy and Crop Science |
Zdroj: | Field Crops Research Field Crops Research, Elsevier, 2018, 216, pp.75-88. ⟨10.1016/j.fcr.2017.11.005⟩ Webber, H, White, J W, Kimball, B A, Ewert, F, Asseng, S, Rezaei, E E, Pinter, P J, Hatfield, J L, Reynolds, M P, Ababaei, B, Bindi, M, Doltra, J, Ferrise, R, Kage, H, Kassie, B T, Kersebaum, K-C, Luig, A, Olesen, J E, Semenov, M A, Stratonovitch, P, Ratjen, A M, LaMorte, R L, Leavitt, S W, Hunsaker, D J, Wall, G W & Martre, P 2018, ' Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions ', Field Crops Research, vol. 216, no. February, pp. 75-88 . https://doi.org/10.1016/j.fcr.2017.11.005 Webber, H, White, J W, Kimball, B, Ewert, F, Asseng, S, Rezaei, E E, Pinter Jr., P J, Hatfield, J L, Reynolds, M, Ababaei, B, Bindi, M, Doltra, J, Ferrise, R, Kage, H, Kassie, B T, Kersebaum, K C, Luig, A, Olesen, J E, Semenov, M A, Stratonovitch, P, Ratjen, A M, LaMorte, R L, Leawitt, S W, Hunsaker, D J, Wall, G W & Martre, P 2018, ' Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions ' Field Crops Research, vol. 216, pp. 75-88 . https://doi.org/10.1016/j.fcr.2017.11.005 |
ISSN: | 0378-4290 |
Popis: | International audience; Despite widespread application in studying climate change impacts, most crop models ignore complex interactions among air temperature, crop and soil water status, CO2 concentration and atmospheric conditions that influence crop canopy temperature. The current study extended previous studies by evaluating Tc simulations from nine crop models at six locations across environmental and production conditions. Each crop model implemented one of an empirical (EMP), an energy balance assuming neutral stability (EBN) or an energy balance correcting for atmospheric stability conditions (EBSC) approach to simulate Tc. Model performance in predicting Tc was evaluated for two experiments in continental North America with various water, nitrogen and CO2 treatments. An empirical model fit to one dataset had the best performance, followed by the EBSC models. Stability conditions explained much of the differences between modeling approaches. More accurate simulation of heat stress will likely require use of energy balance approaches that consider atmospheric stability conditions. |
Databáze: | OpenAIRE |
Externí odkaz: |