On single-step HSS iterative method with circulant preconditioner for fractional diffusion equations
Autor: | Ya-E Qi, Guo-Feng Zhang, Mu-Zheng Zhu |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Circulant preconditioner
Algebra and Number Theory Partial differential equation Preconditioned conjugate gradient (PCG) method Preconditioner Iterative method Applied Mathematics lcsh:Mathematics 010103 numerical & computational mathematics lcsh:QA1-939 01 natural sciences Hermitian matrix Computer Science::Numerical Analysis Toeplitz 010101 applied mathematics Rate of convergence Conjugate gradient method Fractional diffusion equations Applied mathematics Single-step Hermitian and skew-Hermitian splitting 0101 mathematics Coefficient matrix Circulant matrix Analysis Mathematics |
Zdroj: | Advances in Difference Equations, Vol 2019, Iss 1, Pp 1-14 (2019) |
ISSN: | 1687-1847 |
Popis: | By exploiting Toeplitz-like structure and non-Hermitian dense property of the discrete coefficient matrix, a new double-layer iterative method called SHSS-PCG method is employed to solve the linear systems originating from the implicit finite difference discretization of fractional diffusion equations (FDEs). The method is a combination of the single-step Hermitian and skew-Hermitian splitting (SHSS) method with the preconditioned conjugate gradient (PCG) method. Further, the new circulant preconditioners are proposed to improve the efficiency of SHSS-PCG method, and the computation cost is further reduced via using the fast Fourier transform (FFT). Theoretical analysis shows that the SHSS-PCG iterative method with circulant preconditioners is convergent. Numerical experiments are given to show that our SHSS-PCG method with circulant preconditioners preforms very well, and the proposed circulant preconditioners are very efficient in accelerating the convergence rate. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |