View Planning Approach for Automatic 3D Digitization of Unknown Objects
Autor: | Souhaiel Khalfaoui, David Fofi, Ralph Seulin, Yohan Fougerolle |
---|---|
Přispěvatelé: | Laboratoire Electronique, Informatique et Image [UMR6306] (Le2i), Université de Bourgogne (UB)-École Nationale Supérieure d'Arts et Métiers (ENSAM), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS), Laboratoire Electronique, Informatique et Image ( Le2i ), Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique ( CNRS ), Khalfaoui, Souhaiel |
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: |
business.industry
Orientation (computer vision) Computer science [INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] 02 engineering and technology [ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] Constraint (information theory) Set (abstract data type) [INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] 020204 information systems 0202 electrical engineering electronic engineering information engineering 020201 artificial intelligence & image processing Computer vision Artificial intelligence Mean-shift business Digitization |
Zdroj: | The European Conference on Computer Vision The QU3ST-2.5D Sensing Technologies in Motion: The Quest for 3D, in conjunction with ECCV 2012 The QU3ST-2.5D Sensing Technologies in Motion: The Quest for 3D, in conjunction with ECCV 2012, Oct 2012, Florence, Italy. pp.496-505 Computer Vision – ECCV 2012. Workshops and Demonstrations ISBN: 9783642338847 ECCV Workshops (3) The QU3ST-2.5D Sensing Technologies in Motion: The Quest for 3D, in conjunction with ECCV 2012, Oct 2012, Florence, Italy. 7585, pp.496-505, 2012 |
Popis: | International audience; This paper addresses the view planning problem for the digitization of 3D objects without prior knowledge on their shape and presents a novel surface approach for the Next Best View (NBV) computation. The proposed method uses the concept of Mass Vector Chains (MVC) to define the global orientation of the scanned part. All of the viewpoints satisfying an orientation constraint are clustered using the Mean Shift technique to construct a first set of candidates for the NBV. Then, a weight is assigned to each mode according to the elementary orientations of its different descriptors. The NBV is chosen among the modes with the highest weights and which comply with the robotics constraints. Eventually, our method is generic since it is applicable to all kinds of scanners. Experiments applying a digitization cell demonstrate the feasibility and the efficiency of the approach which leads to an intuitive and fast 3D acquisition while moving efficiently the ranging device. |
Databáze: | OpenAIRE |
Externí odkaz: |