Positive Solutions for Discontinuous Systems via a Multivalued Vector Version of Krasnosel’skiĭ’s Fixed Point Theorem in Cones
Autor: | Radu Precup, Jorge Rodríguez-López, Rodrigo López Pouso |
---|---|
Přispěvatelé: | Universidade de Santiago de Compostela. Departamento de Estatística, Análise Matemática e Optimización, Universidade de Santiago de Compostela. Instituto de Matemáticas |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
positive solutions
Differential equation General Mathematics discontinuous differential equations Fixed-point theorem Krasnosel’skiĭ’s fixed point theorem Discontinuous differential equations Differential systems Discontinuous systems 01 natural sciences Computer Science (miscellaneous) Applied mathematics Differential system 0101 mathematics Engineering (miscellaneous) Positive solutions Mathematics lcsh:Mathematics 010102 general mathematics Version vector lcsh:QA1-939 010101 applied mathematics Nonlinear system Regularization (physics) differential system |
Zdroj: | Mathematics Volume 7 Issue 5 Minerva. Repositorio Institucional de la Universidad de Santiago de Compostela instname Mathematics, Vol 7, Iss 5, p 451 (2019) |
ISSN: | 2227-7390 |
DOI: | 10.3390/math7050451 |
Popis: | We establish the existence of positive solutions for systems of second&ndash order differential equations with discontinuous nonlinear terms. To this aim, we give a multivalued vector version of Krasnosel&rsquo skiĭ&rsquo s fixed point theorem in cones which we apply to a regularization of the discontinuous integral operator associated to the differential system. We include several examples to illustrate our theory. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |