Development of intensified flat-plate packed-bed solar reactors for heterogeneous photocatalysis

Autor: Antonio Carlos Silva Costa Teixeira, Leandro Issamu Nagamati, João Gabriel M. Carneiro, Bruno Ramos
Rok vydání: 2021
Předmět:
Zdroj: Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Popis: Solar-driven photocatalysis is a promising water-cleaning and energy-producing technology that addresses some of the most urgent engineering problems of the twenty-first century: universal access to potable water, use of renewable energy, and mitigation of CO2 emissions. In this work, we aim at improving the efficiency of solar-driven photocatalysis by studying a novel reactor design based on microfluidic principles using 3D-printable geometries. The printed reactors had a dimensional accuracy of 97%, at a cost of less than $1 per piece. They were packed with 1.0-mm glass and steel beads coated with ZnO synthesised by a sol-gel routine, resulting in a bed with 46.6% void fraction (reaction volume of ca. 840 μL and equivalent flow diameter of 580 μm) and a specific surface area of 3200 m2 m−3. Photocatalytic experiments, under sunlight-level UV-A irradiation, showed that reactors packed with steel supports had apparent reaction rates ca. 75% higher than those packed with glass supports for the degradation of an aqueous solution of acetaminophen; however, they were strongly deactivated after the first use suggesting poor fixation. Glass supports showed no measurable deactivation after three consecutive uses. The apparent first-order reaction rate constants were between 1.9 and 9.5 × 10−4 s−1, ca. ten times faster than observed for conventional slurry reactors. The mass transfer was shown to be efficient (Sh > 7.7) despite the catalyst being immobilised onto fixed substrates. Finally, the proposed reactor design has the merit of a straightforward scaling out by sizing the irradiation window according to design specifications, as exemplified in the paper.
Databáze: OpenAIRE