Seasonal trends in photosynthesis and leaf traits in scarlet oak
Autor: | Alistair Rogers, Julien Lamour, Dedi Yang, Angela C. Burnett, Kenneth J Davidson, Shawn P. Serbin, Jeremiah Anderson |
---|---|
Rok vydání: | 2021 |
Předmět: |
0106 biological sciences
Canopy Stomatal conductance Physiology Vapour Pressure Deficit Phenology Climate Growing season Plant Science Biology Seasonality Photosynthesis medicine.disease 010603 evolutionary biology 01 natural sciences Photosynthetic capacity Plant Leaves Quercus Agronomy medicine Seasons 010606 plant biology & botany |
Zdroj: | Tree Physiology. 41:1413-1424 |
ISSN: | 1758-4469 |
DOI: | 10.1093/treephys/tpab015 |
Popis: | Understanding seasonal variation in photosynthesis is important for understanding and modeling plant productivity. Here, we used shotgun sampling to examine physiological, structural and spectral leaf traits of upper canopy, sun-exposed leaves in Quercus coccinea Münchh (scarlet oak) across the growing season in order to understand seasonal trends, explore the mechanisms underpinning physiological change and investigate the impact of extrapolating measurements from a single date to the whole season. We tested the hypothesis that photosynthetic rates and capacities would peak at the summer solstice, i.e., at the time of peak photoperiod. Contrary to expectations, our results reveal a late-season peak in both photosynthetic capacity and rate before the expected sharp decrease at the start of senescence. This late-season maximum occurred after the higher summer temperatures and vapor pressure deficit and was correlated with the recovery of leaf water content and increased stomatal conductance. We modeled photosynthesis at the top of the canopy and found that the simulated results closely tracked the maximum carboxylation capacity of Rubisco. For both photosynthetic capacity and modeled top-of-canopy photosynthesis, the maximum value was therefore not observed at the summer solstice. Rather, in each case, the measurements at and around the solstice were close to the overall seasonal mean, with values later in the season leading to deviations from the mean by up to 41 and 52%, respectively. Overall, we found that the expected Gaussian pattern of photosynthesis was not observed. We conclude that an understanding of species- and environment-specific changes in photosynthesis across the season is essential for correct estimation of seasonal photosynthetic capacity. |
Databáze: | OpenAIRE |
Externí odkaz: |