Terminology-aware segmentation and domain feature for the WMT19 biomedical translation task

Autor: Marta R. Costa-jussà, Casimiro Pio Carrino, Bardia Rafieian, José A. R. Fonollosa
Přispěvatelé: Universitat Politècnica de Catalunya. Doctorat en Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. VEU - Grup de Tractament de la Parla
Předmět:
Zdroj: Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
WMT (3)
Popis: In this work, we give a description of the TALP-UPC systems submitted for the WMT19 Biomedical Translation Task. Our proposed strategy is NMT model-independent and relies only on one ingredient, a biomedical terminology list. We first extracted such a terminology list by labelling biomedical words in our training dataset using the BabelNet API. Then, we designed a data preparation strategy to insert the terms information at a token level. Finally, we trained the Transformer model with this terms-informed data. Our best-submitted system ranked 2nd and 3rd for Spanish-English and English-Spanish translation directions, respectively.
Databáze: OpenAIRE