Sparse Separable Nonnegative Matrix Factorization
Autor: | Jeremy E. Cohen, Nicolas Gillis, Nicolas Nadisic, Arnaud Vandaele |
---|---|
Přispěvatelé: | University of Mons [Belgium] (UMONS), Parcimonie et Nouveaux Algorithmes pour le Signal et la Modélisation Audio (PANAMA), Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE (IRISA-D5), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE (IRISA-D5), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes 1 (UR1), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Signal Processing (eess.SP)
FOS: Computer and information sciences Computer Science - Machine Learning Computer science Computer Vision and Pattern Recognition (cs.CV) Multispectral image Computer Science - Computer Vision and Pattern Recognition Machine Learning (stat.ML) 02 engineering and technology Least squares Machine Learning (cs.LG) Separable space Non-negative matrix factorization Matrix (mathematics) Statistics::Machine Learning Statistics - Machine Learning FOS: Electrical engineering electronic engineering information engineering FOS: Mathematics 0202 electrical engineering electronic engineering information engineering Electrical Engineering and Systems Science - Signal Processing [MATH]Mathematics [math] Time complexity Mathematics - Optimization and Control Dykstra's projection algorithm 020206 networking & telecommunications Solver Computer Science::Numerical Analysis Optimization and Control (math.OC) 020201 artificial intelligence & image processing Algorithm |
Zdroj: | ECML PKDD 2020-European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases ECML PKDD 2020-European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Sep 2020, Ghent, Belgium. pp.1-20 Lecture Notes in Computer Science Lecture Notes in Computer Science-Machine Learning and Knowledge Discovery in Databases Machine Learning and Knowledge Discovery in Databases ISBN: 9783030676575 ECML/PKDD (1) Machine Learning and Knowledge Discovery in Databases-European Conference, ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part I |
ISSN: | 0302-9743 1611-3349 |
Popis: | We propose a new variant of nonnegative matrix factorization (NMF), combining separability and sparsity assumptions. Separability requires that the columns of the first NMF factor are equal to columns of the input matrix, while sparsity requires that the columns of the second NMF factor are sparse. We call this variant sparse separable NMF (SSNMF), which we prove to be NP-complete, as opposed to separable NMF which can be solved in polynomial time. The main motivation to consider this new model is to handle underdetermined blind source separation problems, such as multispectral image unmixing. We introduce an algorithm to solve SSNMF, based on the successive nonnegative projection algorithm (SNPA, an effective algorithm for separable NMF), and an exact sparse nonnegative least squares solver. We prove that, in noiseless settings and under mild assumptions, our algorithm recovers the true underlying sources. This is illustrated by experiments on synthetic data sets and the unmixing of a multispectral image. 20 pages, accepted in ECML 2020 |
Databáze: | OpenAIRE |
Externí odkaz: |