Improved estimates for bilinear rough singular integrals

Autor: Danqing He, Bae Jun Park
Rok vydání: 2022
Předmět:
Zdroj: Mathematische Annalen.
ISSN: 1432-1807
0025-5831
DOI: 10.1007/s00208-022-02444-2
Popis: We study bilinear rough singular integral operators $\mathcal{L}_{\Omega}$ associated with a function $\Omega$ on the sphere $\mathbb{S}^{2n-1}$. In the recent work of Grafakos, He, and Slav\'ikov\'a (Math. Ann. 376: 431-455, 2020), they showed that $\mathcal{L}_{\Omega}$ is bounded from $L^2\times L^2$ to $L^1$, provided that $\Omega\in L^q(\mathbb{S}^{2n-1})$ for $4/3
Comment: Minor revision. To appear in Math. Ann
Databáze: OpenAIRE