Improved estimates for bilinear rough singular integrals
Autor: | Danqing He, Bae Jun Park |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Mathematische Annalen. |
ISSN: | 1432-1807 0025-5831 |
DOI: | 10.1007/s00208-022-02444-2 |
Popis: | We study bilinear rough singular integral operators $\mathcal{L}_{\Omega}$ associated with a function $\Omega$ on the sphere $\mathbb{S}^{2n-1}$. In the recent work of Grafakos, He, and Slav\'ikov\'a (Math. Ann. 376: 431-455, 2020), they showed that $\mathcal{L}_{\Omega}$ is bounded from $L^2\times L^2$ to $L^1$, provided that $\Omega\in L^q(\mathbb{S}^{2n-1})$ for $4/3 Comment: Minor revision. To appear in Math. Ann |
Databáze: | OpenAIRE |
Externí odkaz: |