The geometry of the space of branched rough paths
Autor: | Lorenzo Zambotti, Nikolas Tapia |
---|---|
Přispěvatelé: | Weierstraß-Institut für Angewandte Analysis und Stochastik = Weierstrass Institute for Applied Analysis and Stochastics [Berlin] (WIAS), Forschungsverbund Berlin e.V. (FVB) (FVB), Laboratoire de Probabilités, Statistiques et Modélisations (LPSM (UMR_8001)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut für Mathematik [Berlin], Technische Universität Berlin (TU), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Forschungsverbund Berlin e.V. (FVB), Technische Universität Berlin (TUB), Laboratoire de Probabilités, Statistique et Modélisation (LPSM (UMR_8001)) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Pure mathematics
60H10 16T05 General Mathematics Banach space Structure (category theory) Space (mathematics) 01 natural sciences FOS: Mathematics 0101 mathematics ddc:510 ComputingMilieux_MISCELLANEOUS Mathematics Transitive relation 010102 general mathematics Principal homogeneous space Probability (math.PR) Renormalisation 16. Peace & justice Automorphism Action (physics) 010101 applied mathematics [MATH.MATH-PR]Mathematics [math]/Probability [math.PR] Hopf algebras Bijection Rough Paths Mathematics - Probability |
Zdroj: | Proceedings of the London Mathematical Society Proceedings of the London Mathematical Society, London Mathematical Society, 2020, 121 (2), pp.220-251. ⟨10.1112/plms.12311⟩ |
ISSN: | 0024-6115 |
DOI: | 10.1112/plms.12311⟩ |
Popis: | We construct an explicit transitive free action of a Banach space of H\"older functions on the space of branched rough paths, which yields in particular a bijection between theses two spaces. This endows the space of branched rough paths with the structure of a principal homogeneous space over a Banach space and allows to characterize its automorphisms. The construction is based on the Baker-Campbell-Hausdorff formula, on a constructive version of the Lyons-Victoir extension theorem and on the Hairer-Kelly map, which allows to describe branched rough paths in terms of anisotropic geometric rough paths. Comment: Final version to appear in Proceedings of the London Mathematical Society. 34 pages |
Databáze: | OpenAIRE |
Externí odkaz: |