Use of allostery to identify inhibitors of calmodulin-induced activation of Bacillus anthracis edema factor

Autor: Arnaud Blondel, Elodie Laine, Wei-Jen Tang, Daniel Ladant, Thérèse E. Malliavin, Johanna C. Karst, Christophe Goncalves, Aurélien Lesnard, Sylvain Rault
Přispěvatelé: Bioinformatique Structurale, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Biochimie des Interactions Macromoléculaires / Biochemistry of Macromolecular Interactions, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU), Ben May Department for Cancer Research, University of Chicago, The French National Chemical Library and, in particular, Prof. Marcel Hibert, Dr. Bruno Didier, Dr. Philippe Jauffret, and Mr. Kiet Tran are gratefully acknowledged. Dr. David Giganti indicated useful references. This work was supported by the French Ministry of Defense (Direction Générale de l’Armement - Mission pour la Recherche et l’Innovation Scientifique), the Centre National de la Recherche Scientifique, and Institut Pasteur. Molecular dynamics calculations were performed by means of an allocation from the Centre National de la Recherche Scientifique Institut du Développement et des Ressources en Informatique Scientifique supercomputing center, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique ( CNRS ), Biochimie des Interactions Macromoléculaires, Centre d'Etudes et de Recherche sur le Médicament de Normandie ( CERMN ), Université de Caen Normandie ( UNICAEN ), Normandie Université ( NU ) -Normandie Université ( NU ), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2010
Předmět:
Models
Molecular

MESH : Drug Design
Protein Conformation
Chemistry
Pharmaceutical

MESH : Chemistry
Pharmaceutical

MESH : Allosteric Site
MESH: Drug Design
inhibition of protein–protein association
01 natural sciences
Bordetella pertussis
Adenylyl cyclase
MESH: Bordetella pertussis
chemistry.chemical_compound
MESH: Protein Structure
Tertiary

MESH: Protein Conformation
Databases
Protein

[ SDV.BIBS ] Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]
MESH: Allosteric Site
MESH : Protein Conformation
0303 health sciences
Multidisciplinary
biology
MESH : Bordetella pertussis
MESH : Antigens
Bacterial

Biological Sciences
MESH: Calmodulin
MESH : Bacillus anthracis
[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]
Bacillus anthracis
MESH: Bacillus anthracis
Biochemistry
MESH : Protein Structure
Tertiary

Allosteric Site
MESH: Models
Molecular

MESH: Computational Biology
MESH: Databases
Protein

MESH : Calmodulin
Calmodulin
MESH : Models
Molecular

Anthrax toxin
Bacterial Toxins
Allosteric regulation
010402 general chemistry
drug discovery
03 medical and health sciences
MESH: Chemistry
Pharmaceutical

Humans
MESH : Databases
Protein

Binding site
030304 developmental biology
Antigens
Bacterial

MESH: Humans
MESH : Humans
Computational Biology
anthrax
cyaA
biology.organism_classification
molecular dynamics
Protein Structure
Tertiary

0104 chemical sciences
chemistry
Allosteric enzyme
MESH: Bacterial Toxins
Drug Design
transition path calculation
MESH : Bacterial Toxins
biology.protein
MESH : Computational Biology
MESH: Antigens
Bacterial
Zdroj: Proceedings of the National Academy of Sciences of the United States of America
Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2010, 107 (25), pp.11277-11282. ⟨10.1073/pnas.0914611107⟩
Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2010, 107 (25), pp.11277-11282. 〈10.1073/pnas.0914611107〉
Proceedings of the National Academy of Sciences of the United States of America, 2010, 107 (25), pp.11277-11282. ⟨10.1073/pnas.0914611107⟩
ISSN: 0027-8424
1091-6490
DOI: 10.1073/pnas.0914611107⟩
Popis: Allostery plays a key role in the regulation of the activity and function of many biomolecules. And although many ligands act through allostery, no systematic use is made of it in drug design strategies. Here we describe a procedure for identifying the regions of a protein that can be used to control its activity through allostery. This procedure is based on the construction of a plausible conformational path, which describes protein transition between known active and inactive conformations. The path is calculated by using a framework approach that steers and markedly improves the conjugate peak refinement method. The evolution of conformations along this path was used to identify a putative allosteric site that could regulate activation of Bacillus anthracis adenylyl cyclase toxin (EF) by calmodulin. Conformations of the allosteric site at different steps along the path from the inactive (free) to the active (bound to calmodulin) forms of EF were used to perform virtual screenings and propose candidate EF inhibitors. Several candidates then proved to inhibit calmodulin-induced activation in an in vitro assay. The most potent compound fully inhibited EF at a concentration of 10 μM. The compounds also inhibited the related adenylyl cyclase toxin from Bordetella pertussis (CyaA). The specific homology between the putative allosteric sites in both toxins supports that these pockets are the actual binding sites of the selected inhibitors.
Databáze: OpenAIRE