On the nonexistence of three-dimensional tiling in the Lee metric II

Autor: Charles Payan, Sylvain Gravier, Michel Mollard
Rok vydání: 2001
Předmět:
Zdroj: Discrete Mathematics. 235(1-3):151-157
ISSN: 0012-365X
DOI: 10.1016/s0012-365x(00)00268-5
Popis: We prove that there does not exist a tiling of R 3 with Lee spheres of radius greater than 0 such that the radius of at least one of them is greater than one.
Databáze: OpenAIRE