Kinetics of field-induced phase separation of a magnetic colloid under rotating magnetic fields

Autor: Andrey Zubarev, S. Schaub, Pavel Kuzhir, Maxime Raboisson-Michel, J. Queiros Campos, Gregory Verger-Dubois
Přispěvatelé: Institut de Physique de Nice (INPHYNI), Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA), Axlepios Biomedical, Laboratoire de Biologie du Développement de Villefranche sur mer (LBDV), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Ural Federal University [Ekaterinburg] (UrFU)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Journal of Chemical Physics
Journal of Chemical Physics, American Institute of Physics, 2020, 153 (15), pp.154902. ⟨10.1063/5.0023706⟩
J Chem Phys
ISSN: 0021-9606
1089-7690
DOI: 10.1063/5.0023706⟩
Popis: This paper is focused on the experimental and theoretical study of the phase separation of a magnetic nanoparticle suspension under rotating magnetic fields in a frequency range, 5 Hz ≤ ν ≤ 25 Hz, relevant for several biomedical applications. The phase separation is manifested through the appearance of needle-like dense particle aggregates synchronously rotating with the field. Their size progressively increases with time due to the absorption of individual nanoparticles (aggregate growth) and coalescence with neighboring aggregates. The aggregate growth is enhanced by the convection of nanoparticles toward rotating aggregates. The maximal aggregate length, Lmax ∝ ν-2, is limited by fragmentation arising as a result of their collisions. Experimentally, the aggregate growth and coalescence occur at a similar timescale, ∼1 min, weakly dependent on the field frequency. The proposed theoretical model provides a semi-quantitative agreement with the experiments on the average aggregate size, aggregation timescale, and size distribution function without any adjustable parameter. © 2020 Author(s). We are grateful to Dr. A. Bee and Dr. D. Talbot from PHENIX laboratory at Sorbonne University (Paris, France) for providing us with the parent ferrofluid. P.K. acknowledges the French “Agence Nationale de la Recherche,” Project Future Investments UCA JEDI, Grant No. ANR-15-IDEX-01 (projects ImmunoMag and MagFilter) and the private company Axlepios Biomedical for financial support, and J.Q.C. acknowledges the financial support of UCA JEDI and Axlepios Biomedical through the PhD fellowship. A.Z. thanks the Russian Science Foundation, Project No. 20-12-00031, for financial support.
Databáze: OpenAIRE