Epidemiological Forecasting with Model Reduction of Compartmental Models. Application to the COVID-19 Pandemic

Autor: Thomas Boiveau, Olga Mula, Athmane Bakhta, Yvon Maday
Přispěvatelé: Service de Thermo-hydraulique et de Mécanique des Fluides (STMF), Département de Modélisation des Systèmes et Structures (DM2S), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Sorbonne Université (SU), Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), COmputational Mathematics for bio-MEDIcal Applications (COMMEDIA), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPC), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPC)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
FOS: Computer and information sciences
2019-20 coronavirus outbreak
Coronavirus disease 2019 (COVID-19)
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
forecasting
010103 numerical & computational mathematics
Biology
01 natural sciences
reduced basis
General Biochemistry
Genetics and Molecular Biology

Article
Methodology (stat.ME)
Reduction (complexity)
03 medical and health sciences
0302 clinical medicine
Pandemic
FOS: Mathematics
Econometrics
model reduction
030212 general & internal medicine
Mathematics - Numerical Analysis
0101 mathematics
lcsh:QH301-705.5
Statistics - Methodology
Parametric statistics
General Immunology and Microbiology
COVID-19
Numerical Analysis (math.NA)
3. Good health
lcsh:Biology (General)
[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology
[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie
epidemiology
General Agricultural and Biological Sciences
Zdroj: Biology
Volume 10
Issue 1
Biology, 2020, 10 (1), pp.22. ⟨10.3390/biology10010022⟩
Biology, MDPI 2020, 10 (1), pp.22. ⟨10.3390/biology10010022⟩
Biology, Vol 10, Iss 22, p 22 (2021)
ISSN: 2079-7737
DOI: 10.3390/biology10010022
Popis: Simple Summary Using tools from the reduced order modeling of parametric ODEs and PDEs, including a new positivity-preserving greedy reduced basis method, we present a novel forecasting method for predicting the propagation of an epidemic. The method takes a collection of highly detailed compartmental models (with different initial conditions, initial times, epidemiological parameters and numerous compartments) and learns a model with few compartments which best fits the available health data and which is used to provide the forecasts. We illustrate the promising potential of the approach to the spread of the current COVID-19 pandemic in the case of the Paris region during the period from March to November 2020, in which two epidemic waves took place. Abstract We propose a forecasting method for predicting epidemiological health series on a two-week horizon at regional and interregional resolution. The approach is based on the model order reduction of parametric compartmental models and is designed to accommodate small amounts of sanitary data. The efficiency of the method is shown in the case of the prediction of the number of infected people and people removed from the collected data, either due to death or recovery, during the two pandemic waves of COVID-19 in France, which took place approximately between February and November 2020. Numerical results illustrate the promising potential of the approach.
Databáze: OpenAIRE