An Application of a Novel Technique for Assessing the Operating Performance of Existing Cooling Systems on a University Campus

Autor: Nursyarizal Mohd Nor, Elnazeer Ali Hamid Abdalla, Sabo Miya Hassan, Perumal Nallagownden, Mohd Fakhizan Romlie
Rok vydání: 2018
Předmět:
Chiller
Control and Optimization
Computer science
020209 energy
Cooling load
Energy Engineering and Power Technology
02 engineering and technology
Cooling capacity
power consumption
cooling capacity
coefficient of performance (COP)
adaptive neuro-fuzzy inference system (ANFIS)
fuzzy clustering subtractive (FCS)
fuzzy C-means clustering (FCM)
particle swarm optimization (PSO)
accelerated particle swarm optimization (APSO)
Fuzzy logic
Automotive engineering
0202 electrical engineering
electronic engineering
information engineering

Water cooling
Electrical and Electronic Engineering
Engineering (miscellaneous)
Adaptive neuro fuzzy inference system
Renewable Energy
Sustainability and the Environment

business.industry
District cooling
Particle swarm optimization
Coefficient of performance
020201 artificial intelligence & image processing
Electricity
business
Energy (miscellaneous)
Efficient energy use
Zdroj: Energies; Volume 11; Issue 4; Pages: 719
ISSN: 1996-1073
Popis: Optimal operation is an important aspect of energy efficiency that can be employed to reduce power consumption. In cooling systems, the chillers consume a large amount of electricity, especially if they are not optimally operated, therefore, they cannot produce the required or rated cooling load capacity. The objective of this paper is to improve coefficient of performance (COP) for the operation of chillers and to reduce power consumption. Two contributions in this work are: (1) the prediction of a model by using Adaptive Neuro-Fuzzy Inference System (ANFIS)-based Fuzzy Clustering Subtractive (FCS), and (2) the classification and optimization of the predicted models by using an Accelerated Particle Swarm Optimization (APSO) algorithm. Particularly, in contribution (1), two models are developed to predict/assess power consumption and cooling load capacity. While in contribution (2), the predictive model’s data obtained are used to classify the operating performance of the chiller and to optimize the model in order to reduce power consumption and cooling capacity. Therefore, data classification by APSO is used to enhance the coefficient of performance (COP). The proposed technique reduces the total power consumption by 33.2% and meets the cooling demand requirements. Also, it improves the cooling performance based on COP, thus resulting in a 15.95% increase in efficiency compared to the existing cooling system. The studied ANFIS-based FCS outperforms the ANFIS-based fuzzy C-means clustering in terms of the regression. Then, the algorithm-based classifier APSO has better results compared to the conventional particle swarm optimization (PSO). The data was acquired from the District Cooling System (DCS) at the Universiti Teknologi Petronas (UTP) campus in Malaysia.
Databáze: OpenAIRE