Double resonance in Sturm-Liouville planar boundary value problems
Autor: | Andrea Sfecci |
---|---|
Přispěvatelé: | Sfecci, A. |
Rok vydání: | 2020 |
Předmět: |
Sublinear function
Scalar (mathematics) Homogeneous function Sturm–Liouville theory Dynamical Systems (math.DS) 01 natural sciences Positively homogeneous planar system symbols.namesake Double resonance Planar Shooting method FOS: Mathematics Landesman-Lazer condition Sturm{Liouville boundary value problems Boundary value problem Mathematics - Dynamical Systems 0101 mathematics Landesman-Lazer conditions Dirichlet problem Mathematics Positively homogeneous planar systems Applied Mathematics 010102 general mathematics Mathematical analysis symbols Analysis |
Zdroj: | Topol. Methods Nonlinear Anal. 55, no. 2 (2020), 655-680 |
ISSN: | 1230-3429 |
DOI: | 10.12775/tmna.2019.109 |
Popis: | We provide some existence results for Sturm-Liouville boundary value problems associated with the planar differential system $Jz'=g(t,z) + r(t,z)$ where $g$ is suitably controlled by the gradient of two positively homogeneous functions of degree 2 and $r$ is sublinear with respect to the variable $z$ at infinity. We study the existence of solutions when a double resonance phenomenon occurs by the introduction of Landesman-Lazer type conditions. Applications to scalar second order differential equations are given. |
Databáze: | OpenAIRE |
Externí odkaz: |