Implant resonance and the mechanostat theory: Applications of therapeutic ultrasound for porous metallic scaffolds
Autor: | Wolfram A. Bosbach, Alexandre Presas, Kathryn Grandfield, Joseph Deering, Christian Heiss, David Valentin, Bosco Yu |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Mecànica de Fluids, Universitat Politècnica de Catalunya. FLUIDS - Enginyeria de Fluids, Universitat Politècnica de Catalunya. CDIF - Centre de Diagnòstic Industrial i Fluidodinàmica |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Scaffold
Damping ratio Materials science medicine.medical_treatment Bioengineering 02 engineering and technology 010402 general chemistry 01 natural sciences Resonance Osseointegration Biomaterials Mechanostat theory Mechanostat Osteogenesis Bone-Implant Interface medicine Enginyeria biomèdica::Biomecànica [Àrees temàtiques de la UPC] Biomechanics Dental Implants Therapeutic ultrasound Implant design Biomecànica Natural frequency Prostheses and Implants 021001 nanoscience & nanotechnology 0104 chemical sciences Mechanics of Materials Porous implants Implant 0210 nano-technology Porosity Biomedical engineering Enginyeria mecànica::Mecànica de fluids [Àrees temàtiques de la UPC] |
Zdroj: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
Popis: | The development of treatment strategies for improving secondary stability at the bone-implant interface is a challenge. Porous implants are one solution for improving long-term implant stability, but the osteoconduction process of implants into the bone can be slow. Strain-driven osteogenesis from the mechanostat theory offers insight into pathways for post-operative treatment but mechanisms to deliver strain to the bone-implant interface need refinement. In this work, the use of therapeutic ultrasound is simulated to induce resonance into a porous implant structure. Local strains through the scaffold are measured by varying systemic variables such as damping ratio, applied vibrational force, primary bone-implant stability, and input frequency. At the natural frequency of the system with applied forces of 0.5 N and a damping ratio of 0.5%, roughly half of the nodes in the simulated environment exceed the microstrain threshold of 1000 µe required for new bone formation. A high degree of sensitivity was noted upon changing input frequency, with minor sensitivities arising from damping ratio and applied vibrational force. These findings suggest that the application of therapeutic resonance to improve osseointegration of the bone-implant interface may be viable for applications including dental implants or segmental bone defects. |
Databáze: | OpenAIRE |
Externí odkaz: |