Lindelöf domination versus ω-domination of discrete subsets
Autor: | Ofelia T. Alas, R. G. Wilson, Lúcia Renato Junqueira |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual) Universidade de São Paulo (USP) instacron:USP |
Popis: | A discrete subset is said to be Lindelof dominated (respectively, $$\omega$$-dominated) if it is contained in the closure of a Lindelof (respectively, a countable) subspace. We continue the study of spaces begun in [1] in which every discrete subset is Lindelof dominated (respectively, $$\omega$$-dominated). We generalize results of [1] and [15] concerning perfect Hausdorff spaces and give a ZFC example of a perfect space in which all discrete subsets are Lindelof dominated but not $$\omega$$-dominated. |
Databáze: | OpenAIRE |
Externí odkaz: |