Stratifications of polynomial spaces

Autor: Lev Birbrair
Rok vydání: 2021
Předmět:
Zdroj: Recercat. Dipósit de la Recerca de Catalunya
instname
Publicacions Matemàtiques; Vol. 42, Núm. 2 (1998); p. 383-410
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Popis: In the paper we construct some stratifications of the space of monic polynomials in real and complex cases. These stratifications depend on properties of roots of the polynomials on some given semialgebraic subset of $\Bbb R$ or $\Bbb C$. We prove differential triviality of these stratifications. In the real case the proof is based on properties of the action of the group of interval exchange transformations on the set of all monic polynomials of some given degree. Finally we compare stratifications corresponding to different semialgebraic subsets.
Databáze: OpenAIRE