Occipitocervical fusion combined with 3-dimensional navigation and 3-dimensional printing technology for the treatment of atlantoaxial dislocation with basilar invagination: A case report

Autor: Jun Zhang, Tianyang Yuan, Qinyi Liu, Guoliang Jia, Derui Xu, Lili Yang
Rok vydání: 2020
Předmět:
Zdroj: Medicine
ISSN: 1536-5964
Popis: Introduction: Basilar invagination (BI) is a common deformity in the occipitocervical region. The traditional surgical method of BI is direct transoral decompression followed by posterior decompression and fixation. Posterior-only decompression and fixation have achieved good efficacy in the treatment of BI in recent years, but complications are common due to the operation in the upper cervical vertebra and the medulla oblongata region. Moreover, posterior-only occipitocervical fusion combined with an intraoperative 3-dimensional (3D) navigation system is relatively rare, and reports of this procedure combined with 3D printing technology have not been published. We present a case of BI treated with posterior-only occipitocervical fusion combined with 3D printing technology and 3D navigation system to reduce the risk of surgical complications. Patient Concerns: A 55-year-old patient with a history of neck pain and numbness of the extremities for 6 years developed a walking disorder for 1 year. Diagnoses: Atlantoaxial dislocation with BI. Interventions: The patient underwent posterior-only occipitocervical fusion combined with intraoperative 3D navigation system and 3D printing technology. Outcomes: The patient's walking disorder was resolved and he was able to walk approximately 100 m by himself when he was allowed to get up and move around with the help of a neck brace. At 6 months postoperatively, the patient reported that the numbness of the limbs was reduced, and he could walk >500 m by himself. Conclusion: Occipitocervical fusion is one of the established techniques for the treatment of BI. The biggest advantage of the 2 technologies was that it ensured precise implant placement. The advantages of intraoperative 3D navigation systems are as follows: real-time intraoperative monitoring of the angle and depth of implant placement; the best nailing point can be determined at the time of implantation, rather than according to the operator's previous experience; and the extent of screw insertion is visible to the naked eye, rather than being dependent on the “hand feel” of the surgeon. At the same time, the 3D printing technology can be applied to clarify the relationship between blood vessels and bone around the implant to minimize injury to important structures during implantation.
Databáze: OpenAIRE