Stability of a Szegő-type asymptotics
Autor: | Peter Müller, Ruth Schulte |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Journal of Mathematical Physics. 64:022101 |
ISSN: | 1089-7658 0022-2488 |
DOI: | 10.1063/5.0135006 |
Popis: | We consider a multi-dimensional continuum Schrödinger operator $H$ which is given by a perturbation of the negative Laplacian by a compactly supported bounded potential. We show that, for a fairly large class of test functions, the second-order Szegő-type asymptotics for the spatially truncated Fermi projection of $H$ is independent of the potential and, thus, identical to the known asymptotics of the Laplacian. Version as to appear in the special issue of J Math Phys dedicated to Abel Klein |
Databáze: | OpenAIRE |
Externí odkaz: |