Dynamically visualizing battery reactions by operando Kelvin probe force microscopy

Autor: Kyosuke Matsushita, Hideki Masuda, Nobuyuki Ishida, Daigo Ito, Daisuke Fujita
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Communications Chemistry, Vol 2, Iss 1, Pp 1-6 (2019)
ISSN: 2399-3669
DOI: 10.1038/s42004-019-0245-x
Popis: Energy storage devices using electrochemical reactions have become an integral part of our daily lives, and further improvement of their performance is highly demanded. An important task for this purpose is to thoroughly understand the electrochemical processes governing their chemistry. Here we develop a method based on Kelvin probe force microscopy that enables dynamic visualization of changes in the internal potential distribution in an operating electrochemical device and use it to characterize an all-solid-state lithium ion battery. Observation of the cathode composite regions during a cyclic voltammetry operation reveals differences between the behavior of local electrochemical reactions in the charge and discharge processes. Based on careful inspection of the results, we show that the difference arises from a change in the state of an electronic conductive path network in the composite electrode. Our method provides new insights into the local electrochemical reactions during electrochemical operation of devices. Understanding the working mechanisms of electrochemical energy storage devices is crucial for the design of those with improved performances. Here the authors use Kelvin probe force microscopy to dynamically image the internal potential distribution in an operating all-solid-state Li ion battery.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje